160 research outputs found

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page

    Interleukin 10 (IL-10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma

    Get PDF
    Interleukin 10 (IL-10) is an immunosuppressive factor and has been detected in tumour cell cultures of renal cell carcinoma and of malignant melanoma. IL-10 has been described as a cytokine of the Th2 response; it is able to suppress antigen-presenting cells (APCs) and may lead to down-regulation of HLA class I and II molecules on dendritic cells and to anergy of T-lymphocytes. We evaluated pretreatment serum levels of soluble IL-10 and various clinical parameters to determine their prognostic value in 80 advanced renal cell carcinoma patients seen at our institution between May 1990 and April 1996. For statistical evaluation we used both univariate and multivariate Cox proportional hazards models. An elevated pretreatment serum level of IL-10 was a statistically independent predictor of unfavourable outcome (P < 0.0028), in addition to the well-known clinical and biochemical risk factors. These data support risk stratification for future therapeutic trials and identify a predictor which needs to be validated in prospective studies and may potentially influence decision making in palliative management of patients with metastatic renal cell carcinoma. These data also suggest a potential role of IL-10 in the development of advanced renal cell carcinoma and in the future design of therapeutic strategies. © 1999 Cancer Research Campaig

    NACHOS, a CubeSat-Based High-Resolution UV-Visible Hyperspectral Imager for Remote Sensing of Trace Gases: System Overview, Science Objectives, and Preliminary Results

    Get PDF
    The Nano-satellite Atmospheric Chemistry Hyperspectral Observation System (NACHOS) is a high-throughput (f/2.9), high spectral resolution (1.3 nm optical, 0.57 nm sampling) hyperspectral imager covering the 300-500 nm spectral region with 350 spectral bands. The combined 1.5U instrument payload and 1.5U spacecraft bus comprise a 3U CubeSat. Spectroscopically similar to NASA’s Ozone Monitoring Instrument (OMI), which provides wide-field coverage at ~20 km spatial resolution, NACHOS offers complementary targeted measurements at far higher spatial resolution of ~0.4 km/pixel from 500 km altitude over its 15 ̊ across-track field of view. NACHOS incorporates highly streamlined onboard gas-retrieval algorithms, alleviating the need to routinely downlink massive hyperspectral data cubes. This paper discusses the instrument design, requirements leading to it, preliminary results, and science goals, including monitoring NO2 as a proxy for anthropogenic greenhouse gases, low-level degassing of SO2 and halogen oxides at pre-eruptive volcanoes, and formaldehyde from wildfires. Aiming for an eventual many-satellite constellation providing both high spatial resolution and frequent target revisits, the current NACHOS project is launching two CubeSats, the first already launched to the International Space Station aboard the NG-17 Cygnus vehicle on February 19, 2022 and awaiting deployment to its final orbit in June, and the second launching June 29, 2022

    Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1

    Get PDF
    International audiencePost-transcriptional mechanisms play a predominant role in the control of microRNA (miRNA) production. Recognition of the terminal loop of precursor miRNAs by RNA-binding proteins (RBPs) influences their processing; however, the mechanistic basis for how levels of individual or subsets of miRNAs are regulated is mostly unexplored. We previously showed that hnRNP A1, an RBP implicated in many aspects of RNA processing, acts as an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a. Here, by using an integrative structural biology approach, we show that hnRNP A1 forms a 1:1 complex with pri-mir-18a where both RNA recognition motifs (RRMs) bind to cognate RNA sequence motifs in the terminal loop of pri-mir-18a. Terminal loop binding induces an allosteric destabilization of base-pairing in the pri-mir-18a stem that promotes its downstream processing. Our results highlight terminal loop RNA recognition by RBPs as a potential general principle of miRNA biogenesis and regulation

    Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.

    Get PDF
    ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F(1) structures

    Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.

    Get PDF
    Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism

    Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    Get PDF
    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.This is the author accepted manuscript. The final version is available via ACS at http://pubs.acs.org/doi/abs/10.1021/es506249z

    Effects of circadian disruption on physiology and pathology: from bench to clinic (and back)

    Get PDF
    Nested within the hypothalamus, the suprachiasmatic nuclei (SCN) represent a central biological clock that regulates daily and circadian (i.e., close to 24 h) rhythms in mammals. Besides the SCN, a number of peripheral oscillators throughout the body control local rhythms and are usually kept in pace by the central clock. In order to represent an adaptive value, circadian rhythms must be entrained by environmental signals or zeitgebers, the main one being the daily light?dark (LD) cycle. The SCN adopt a stable phase relationship with the LD cycle that, when challenged, results in abrupt or chronic changes in overt rhythms and, in turn, in physiological, behavioral, and metabolic variables. Changes in entrainment, both acute and chronic, may have severe consequences in human performance and pathological outcome. Indeed, animal models of desynchronization have become a useful tool to understand such changes and to evaluate potential treatments in human subjects. Here we review a number of alterations in circadian entrainment, including jet lag, social jet lag (i.e., desynchronization between body rhythms and normal time schedules), shift work, and exposure to nocturnal light, both in human subjects and in laboratory animals. Finally, we focus on the health consequences related to circadian/entrainment disorders and propose a number of approaches for the management of circadian desynchronization.Fil: Chiesa, Juan José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duhart, José Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bussi, Ivana Leda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andrés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore